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Dr. Murat Gulcur  

In many cases, the lifetime of a sealing system is limited by the compression set of the elas-
tomer. Therefore, it would be beneficial to have a numerical procedure which can capture the 
compression set. This contribution starts with an overview of the existing literature in this field. 
Next, a method based on previous research work is developed and described. It allows to 
predict both the decrease of the sealing force and the resulting permanent deformation. This 
prediction can be done for long time scales. The results of this method are compared to ex-
perimental values of a fluorine-based elastomer. Finally, the aging of an O-ring is simulated 
by the developed method.  

1 Introduction 

The lifetime of sealing systems relies on various parameters, depending on the ma-
terial and the application. In case of thermoset elastomer seals, the sealing function 
and lifetime often is limited by the permanent deformation of the sealing material 
under compression which is called compression set [1]. Upon the lifetime of the seal-
ing material the cross-linking chemical bonds holding the polymer chains together 
can break down or can rearrange at different positions. This leads to plastic strains 
which are not driven by the stress level as it would be in classical rate-independent 
plasticity. It is a time-driven chemical reaction with a given rate and accordingly, the 
unloaded shape of the seal will continuously change. 

The permanent deformation of the seal also causes a decrease of the stresses and 
hence, a decrease of the corresponding sealing force. An appropriate simulation 
method can predict the permanent deformation and stress relaxation to estimate the 
lifetime of the sealing system. It requires a material model which is capable to de-
scribe the compression set and the corresponding stress relaxation. 

Chapter 2 contains a description of aging effects in elastomers and their microstruc-
tural explanation. Furthermore, it contains a literature overview over research work 
in the area of compression set modeling in general and in sealing technology appli-
cations. In chapter 3, a method based on previous research work is developed and 
described. The method can be used to carry out lifetime predictions of sealing sys-
tems.  

In chapter 4, the prediction of the model is applied to a fluorine-based elastomer and 
compared to experimental results. Finally, the method is applied to an O-ring and 
the results are discussed in chapter 5.  
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2 State of the Art 

In order to model the compression set, the basic understanding of aging is crucial. 
Therefore, the knowledge about its explanation on a molecular level is described 
first. In subchapter 2.2, the scientific work around modelling the compression set in 
FEA is reported.  

2.1 Aging Effects in Elastomers and their Microstructural Explanation 

Elastomeric seals can be exposed to cyclic or continuous media during their service 
life. As a result, their mechanical performance is degraded over time which is com-
monly known as aging. Exposure to air, water, exposure to UV light or ozone, thermal 
oxidation, or chemically reactive environments can all cause aging, see e.g. Bahro-
loloumi [2]. Unless used in vacuum or chemically inert environments, almost all pol-
ymers are susceptible to oxidation. Oxidation is a thermally driven degradation which 
occurs at slow rates at ambient temperatures. Thus, to accelerate oxidation and pre-
dict the lifetime of seals, aging tests are performed at elevated temperatures [3].  
In an elastomer formulation, there are mainly 4 ingredients: base cross-linkable pol-
ymer, curing agents, fillers and stabilizers. The viscoelastic properties of an elasto-
meric material are inherent from the polymer which is the primary ingredient of the 
formulation. The polymer chains are cross-linked to maintain the shape and viscoe-
lasticity of the moulded parts [4]. During the aging process, any of these ingredients 
can be affected. However, the changes of the primary base polymer will affect the 
material properties the most. 
When the temperature is increased to elevated levels, the primary valance bonds in 
polymers can start to break which leads to chain scission. If scission occurs between 
the main chain and the side groups, double bonds and crosslinks may start to form. 
In this case, polymers stabilize upon heating and a relaxation of stresses with time 
occurs due to the chemical reactions [5, 6]. In the high temperature regime, elasto-
mers can either soften or harden, either of which eventually leads to a loss in their 
desirable properties. Depending on the aging type and mechanism, the cross-links 
between the polymer chains can break. In that case the material will soften. If the 
polymer chains start to bind upon heating, the material hardens due to excessive 
cross-linking. Hardened elastomers will become more susceptible to forming cracks 
under stresses [7]. Exposure to the external media can also cause chain-scission or 
breakage of intermolecular cross-links leading to a loss in material properties. 
Finally, under compressive stresses aging effects will be more severe which was 
investigated by Li et al. [8]. They tested loaded and unloaded EPDM gaskets and 
observed this negative effect of compressive stresses on the aging behaviour.  

2.2 Modelling the Compression Set in Finite Element Analysis 

During aging bonds within the 3-dimensional network are relocating in a stress-free 
configuration. This leads to a decrease of the stresses and to a permanent defor-
mation which increases over time. Achenbach considers this relocation procedure to 
develop a model which is able to capture the corresponding aging effects and the 
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compression set [9, 10]. He starts from the Neo-Hookean hyperelastic model which 
can be formulated by using the number of cross-links 𝑁𝑁 in the rubber network:  

𝜎𝜎 = 2 𝐶𝐶10 (𝜆𝜆 − 𝜆𝜆−2) = 2 𝑁𝑁 𝑐𝑐 (𝜆𝜆 − 𝜆𝜆−2) (1) 

In this equation, 𝜎𝜎 is the Cauchy stress, 𝐶𝐶10 is the Neo-Hooke material parameter, 𝜆𝜆 
is the principal stretch, 𝑁𝑁 is the number of cross-links in the rubber and 𝑐𝑐 is another 
material parameter. While 𝑐𝑐 is constant, 𝑁𝑁 = 𝑁𝑁(𝑡𝑡) is already modeling the stress 
decrease when bonds are broken.  

Equation (1) is the 1-dimensional representation of the Neo-Hookean law and the 
corresponding principal stretch in a tensile test is given by equation (2) where 𝑙𝑙 is 
the deformed length and 𝑙𝑙0 is the undeformed length of the tensile specimen. 

𝜆𝜆 =
𝑙𝑙
𝑙𝑙0

 (2) 

The Neo-Hookean material parameter 𝐶𝐶10 is directly connected to the shear modulus 
of the material [11], see equation below.  

𝐺𝐺 = 2 𝐶𝐶10 (3) 

Next, Achenbach introduces the stress contribution by the relocated bonds – he is 
defining a “second” network of bonds where the number of curing bonds is given by 
𝑀𝑀. Furthermore, this second network has a different undeformed configuration which 
is the current deformed state. This new undeformed configuration is described by 
the principal stretch 𝜆̂𝜆. Finally, Achenbach formulates the equation below for the total 
Cauchy stress resulting from both the original and the new network.  

𝜎𝜎 = 2 𝑁𝑁 𝑐𝑐 (𝜆𝜆 − 𝜆𝜆−2) + 2 𝑀𝑀 𝑐𝑐 �𝜆𝜆 𝜆̂𝜆−1 − 𝜆𝜆−2 𝜆̂𝜆2� (4) 

Here, the total number of bonds is assumed to be constant.  

𝑁𝑁0 = 𝑁𝑁(𝑡𝑡) + 𝑀𝑀(𝑡𝑡) (5) 

For the change of 𝑁𝑁 over time, Achenbach proposes an exponential law: 

𝑁𝑁(𝑡𝑡) = 𝑁𝑁0 𝑒𝑒−
𝑡𝑡
𝜏𝜏 (6) 

From equation (5) and (6), the formula for 𝑀𝑀(𝑡𝑡) can be derived too. Finally, 
Achenbach transfers this approach to a 3-dimensional stress state and formulates 
the stress equation as shown below [10].  

𝜎𝜎𝑖𝑖𝑖𝑖 = −𝑝𝑝 𝛿𝛿𝑖𝑖𝑖𝑖 + 2 
𝜕𝜕𝑊𝑊0

𝜕𝜕𝐼𝐼1̅
 𝐵𝐵𝑖𝑖𝑖𝑖 + 2�

𝑑𝑑
𝑑𝑑𝑑𝑑 

�
𝜕𝜕𝑊𝑊�

𝜕𝜕𝐼𝐼1
�  𝐵𝐵�𝑖𝑖𝑖𝑖  𝑑𝑑𝑑𝑑

𝑡𝑡

𝜏𝜏=0
 

(7) 

Here, 𝑝𝑝 is the hydrostatic pressure, 𝐵𝐵𝑖𝑖𝑖𝑖 are the coordinates of the left Cauchy-Green 
tensor, 𝑊𝑊0 is the hyperelastic strain energy density function of the old network and 
𝑊𝑊�  is the strain energy density function of the “second” network which can change 
continuously. This approach assumes a split of the strain energy density function 
into an isochoric and a volumetric part [12]. The material is considered to be incom-
pressible and therefore, only the isochoric part remains which is described by 𝑊𝑊0 



548     21st ISC 
______________________________________________________________________________________________________________ 

respectively 𝑊𝑊� . Accordingly, the strain energy function 𝑊𝑊0 is a function of the first 
invariant of the isochoric part of the right Cauchy-Green tensor which is symbolized 
by 𝐼𝐼1̅ while 𝐼𝐼1 would be the first invariant of the complete Cauchy-Green tensor. For 
the second network, only one symbol will be introduced which describes the first 
invariant of the isochoric part of the right Cauchy-Green tensor: 𝐼𝐼1. This is describing 
the deformation of the second or new network and this has a different undeformed 
configuration which can change over time.  

Accordingly, the isochoric strain energy density function of Achenbach’s model is: 

𝑊𝑊 = 𝑁𝑁� 𝐶𝐶10(𝐼𝐼1̅ − 3)���������
𝑊𝑊0

+ �
𝑑𝑑𝑊𝑊�
𝑑𝑑𝑑𝑑 

𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏=0
 

      = 𝑁𝑁� 𝐶𝐶10(𝐼𝐼1̅ − 3) + �
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑑𝑑 

𝐶𝐶10 �𝐼𝐼1 − 3� 𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏=0
 

(8) 

Here, 𝑁𝑁� and 𝑀𝑀� are the unified numbers of bonds according to the equation below.  

𝑁𝑁� = 𝑁𝑁 𝑁𝑁0⁄   
𝑀𝑀� = 𝑀𝑀 𝑀𝑀0⁄  

(9) 

The left summand in equation (8) belongs to the well-known Neo-Hookean strain 
energy density function if 𝑁𝑁� = 1, see e.g. [13]. The left summand in equation (8) is 
decreasing over time which describes the break down of the primary network of 
bonds. The right summand (the integral) is describing the build up of the new network 
(secondary network).  

Lion and Johlitz also develop a model to describe the compression set in elastomers 
and they use a time-dependent approach which is similar to the one Achenbach 
proposed [14]. They also assume that the old or primary network of bonds is breaking 
down continuously while a new network (secondary network) is building up in the 
deformed state. Accordingly, they formulate a split strain energy density function as 
shown in equation (8). In addition, they consider a volumetric deformation and the 
corresponding strain energy density function and introduce a similar time depend-
ence to the volumetric response. This allows them to capture volume changes due 
to aging effects. They derive all equations of the required continuum mechanics in 
detail.  

Johlitz is continuing this work and proposes two new material models to capture 
aging effects in elastomers [15]. The first model is based on a split of the isochoric 
strain energy density function into two parts: one referring to the old (primary) net-
work of bonds and one referring to the new (secondary) network of bonds. This ap-
proach is similar to the approaches described above. However, while Achenbach is 
formulating this on the basis of the Neo-Hookean law of hyperelasticity, Johlitz is 
using a Mooney type of strain energy density. Johlitz also shows that for the case of 
constant temperatures his model describes the number of network bonds by the 
same exponential law as proposed by Achenbach (see equation (6)).  
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The second model Johlitz introduces couples diffusion and aging effects [15]. It al-
lows to model aging effects depending on the concentration of oxygen inside the 
elastomer. This dependence can be inhomogeneous and requires the solution of the 
concentration field in addition to the displacement field. For both models, Johlitz de-
rives all continuum equations for the three-dimensional case and implements them 
into the finite element code PANDAS.  

Bahrololoumi et al. develop a model to describe aging effects which is based on a 
decay function integration into the strain energy density function [2]. Bahrololoumi et 
al. derive the stress-strain relationships by using the second Piola-Kirchhoff stress 
tensor and they are able to capture the decay of mechanical properties in a 3D stress 
state. The aging effects are modelled by referring to the undeformed configuration. 
They also derive the material tangent tensor and implement their model into an FEA 
code by using the Total Lagrangian element formulation. Details to the Total Lagran-
gian formulation and its implementation into the FEA code Z88 are described by Rieg 
et al. [16].  

Maiti et al. are modeling the compression set of a silicone elastomer which is caused 
by radiation [17]. They use the model of Tobolsky to formulate a one-dimensional 
relationship between the permanent set, the radiation dose and the strain at which 
the radiation-induced aging takes place. Their model allows to predict the stress-
strain behavior, the permanent set and the crosslink density of the rubber.  

3 Method to Model the Compression Set in Finite Element Analysis 

In the previous chapter several methods to capture compression set are listed and 
described. The model of Achenbach was already successfully applied to sealing sys-
tems and it is able to capture both compression set and compressive stress relaxa-
tion. Furthermore, it can be combined with time-temperature-shifting which allows to 
use short time tests to calibrate a long-term material model. Therefore, the model of 
Achenbach will be used in the following.  
The material model will be implemented by using a split of the deformation into an 
isochoric and a volumetric part. Accordingly, deformation gradient 𝑭𝑭, the right Cau-
chy-Green tensor 𝑪𝑪 and the left Cauchy-Green tensor 𝑩𝑩 are split as shown below 
[12].  

𝑭𝑭 = 𝑭𝑭𝑣𝑣 𝑭𝑭� = 𝐽𝐽
1
3 𝟏𝟏   𝐽𝐽−

1
3𝑭𝑭 (10) 

𝑪𝑪� = 𝐽𝐽−
2
3 𝑪𝑪 (11) 

𝑩𝑩𝑣𝑣 = 𝐽𝐽
2
3 𝟏𝟏;                 𝑩𝑩� = 𝐽𝐽−

2
3 𝑩𝑩 (12) 

For each quantity, the volumetric part is symbolized by the index 𝑣𝑣 and the isochoric 
part is symbolized by the accent � , for example 𝑩𝑩�. It will be assumed that the ma-
terial behaves incompressible, hence the volumetric part of the deformation vanishes 
and 𝐽𝐽 = 1 holds. Nevertheless, the determinant 𝐽𝐽 will be left a variable towards the 
end of this chapter.  
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In order to use the Achenbach model within FEA, a user subroutine has to be imple-
mented. The user subroutine will be developed to be used by the FEA code Abaqus. 
It was chosen to use a user subroutine of the type UMAT (user material subroutine) 
which provides the highest level of freedom to model extensions of the constitutive 
law. Furthermore, it leads to the fastest convergence when implemented efficiently.  
In the following, the strain energy density function of Achenbach’s model (8) will be 
used. The Cauchy stress tensor can be split into three parts: a hydrostatic part, a 
deviatoric part 𝒔𝒔 belonging to the primary elastomer network and a deviatoric 𝒔𝒔� part 
belonging to the new, secondary elastomer network.  
𝝈𝝈 = −𝑝𝑝 𝟏𝟏 + 𝒔𝒔 + 𝒔𝒔� (13) 

The derivation with respect to the right Cauchy-Green tensor 𝑪𝑪, pushed forward to 
the current deformation state leads to the Cauchy stress tensor [18]. Equation (14) 
shows this operation for the deviatoric part of the primary network.  

𝒔𝒔 =
1
𝐽𝐽

 𝑭𝑭 𝑺𝑺� 𝑭𝑭𝑇𝑇 =
2
𝐽𝐽

 𝑭𝑭 
𝜕𝜕𝑊𝑊0

𝜕𝜕𝑪𝑪
 𝑭𝑭𝑇𝑇 (14) 

Here, 𝑺𝑺� is the deviatoric part of the second Piola-Kirchhoff stress tensor. Since the 
strain energy density function of the primary network 𝑊𝑊0 is formulated as a function 
of the first invariant of the isochoric part of right Cauchy-Green tensor, the chain rule 
can be used to calculate the derivatives. Wriggers derives the chain rule for this case 
as shown below [18].  
𝜕𝜕𝑊𝑊0

𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖
=
𝜕𝜕𝑊𝑊0

𝜕𝜕𝐶̅𝐶𝑘𝑘𝑘𝑘
  
𝜕𝜕𝐶̅𝐶𝑘𝑘𝑘𝑘
𝜕𝜕𝐶𝐶𝑖𝑖𝑖𝑖

  (15) 

𝜕𝜕𝑪𝑪�
𝜕𝜕𝑪𝑪

=  𝐽𝐽−
2
3  �𝔼𝔼 −

1
3

 𝑪𝑪−1 ⊗ 𝑪𝑪� (16) 

The index notation of equation (16) is shown below.  
𝜕𝜕𝐶̅𝐶𝑖𝑖𝑖𝑖
𝜕𝜕𝐶𝐶𝑘𝑘𝑘𝑘

=  𝐽𝐽−
2
3  �𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 −

1
3

 𝐶𝐶𝑖𝑖𝑖𝑖  𝐶𝐶𝑘𝑘𝑘𝑘−1� (17) 

In equation (16), 𝔼𝔼 is a fourth order unit tensor defined as: 

𝔼𝔼𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖 =  
1
2
�𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗 + 𝛿𝛿𝑖𝑖𝑖𝑖𝛿𝛿𝑗𝑗𝑗𝑗� (18) 

Inserting (15)-(18) into (14) leads to the following result for the deviatoric stresses. 

𝑠𝑠𝑖𝑖𝑖𝑖 =  
2
𝐽𝐽

 𝐹𝐹𝑖𝑖𝑖𝑖 𝐹𝐹𝑗𝑗𝑗𝑗 𝑁𝑁� 𝐶𝐶10 𝛿𝛿𝑚𝑚𝑚𝑚 𝐽𝐽−2 3�  �𝔼𝔼𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 −
1
3

 𝐶𝐶𝑚𝑚𝑚𝑚 𝐶𝐶𝑘𝑘𝑘𝑘−1� (19) 

After some transformations this form can be derived: 

𝑠𝑠𝑖𝑖𝑖𝑖 =  
2
𝐽𝐽

  𝑁𝑁� 𝐶𝐶10   � 𝐽𝐽−2 3�  
1
2
�𝐹𝐹𝑖𝑖𝑖𝑖 𝐹𝐹𝑗𝑗𝑗𝑗 + 𝐹𝐹𝑖𝑖𝑖𝑖 𝐹𝐹𝑗𝑗𝑗𝑗����������������

=𝐵𝐵𝑖𝑖𝑖𝑖

−
1
3

 𝐽𝐽−2 3�  𝐶𝐶𝑚𝑚𝑚𝑚�������
𝐶𝐶𝑚̅𝑚𝑚𝑚

 𝛿𝛿𝑖𝑖𝑖𝑖� (20) 

It can be seen that only the isochoric parts of the deformation tensor will be remain-
ing. Since 𝐶̅𝐶𝑚𝑚𝑚𝑚 = 𝐵𝐵�𝑚𝑚𝑚𝑚 holds, the deviatoric stresses from the primary network finally 
becomes:  
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𝒔𝒔 =  
2
𝐽𝐽

  𝑁𝑁� 𝐶𝐶10   � 𝑩𝑩� −
1
3

 𝑡𝑡𝑡𝑡(𝑩𝑩�) 𝟏𝟏� (21) 

Very similar the deviatoric stresses of the newly formed, secondary elastomer net-
work can be derived. However, in the secondary network the stress-free configura-
tion is different. It is the configuration in which this network established and this can 
be different for each “single” bond which re-bonded. Therefore, a new deformation 
gradient 𝑭𝑭� is introduced which describes the deformation between the configuration 
in which the aging took place and the current configuration. Since the aging can take 
place at different times with different configurations, this deformation gradient is a 
function of time 𝑭𝑭� = 𝑭𝑭�(𝑡𝑡). This time dependence also occurs in quasi-static loading 
conditions where during aging the deformation is continuously changing. Figure 1 
displays the definition of this additional deformation gradient.  

 
Figure 1: Definition of the deformation gradients  

Accordingly, the stresses of the secondary network can be derived as follows.  

𝒔𝒔� =
1
𝐽𝐽

 𝑭𝑭 𝑺𝑺�� 𝑭𝑭𝑇𝑇 =
2
𝐽𝐽

 𝑭𝑭�  
𝜕𝜕𝑊𝑊�

𝜕𝜕𝑪𝑪�
 𝑭𝑭�𝑇𝑇;                  𝑪𝑪� = 𝑭𝑭�𝑇𝑇  𝑭𝑭�     (22) 

By the same steps as for the primary network, the final expression for the deviatoric 
stresses of the secondary network can be obtained.  

𝒔𝒔� = 𝐶𝐶10 �
2
𝐽𝐽

 
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑑𝑑 

 � 𝑩𝑩�� −
1
3

 𝑡𝑡𝑡𝑡(𝑩𝑩��) 𝟏𝟏�  𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏=0
  (23) 

Equation (24) defines the total Cauchy stress tensor.  

𝝈𝝈 = −𝑝𝑝 𝟏𝟏 +
2
𝐽𝐽

  𝑁𝑁� 𝐶𝐶10   � 𝑩𝑩� −
1
3

 𝑡𝑡𝑡𝑡(𝑩𝑩�) 𝟏𝟏� + 𝐶𝐶10 �
2
𝐽𝐽

 
𝑑𝑑𝑀𝑀�
𝑑𝑑𝑑𝑑 

 � 𝑩𝑩�� −
1
3

 𝑡𝑡𝑡𝑡(𝑩𝑩��) 𝟏𝟏�  𝑑𝑑𝑑𝑑
𝑡𝑡

𝜏𝜏=0
  (24) 

For the development of the code implementation, the 4th order material tensor ℂ has 
to be derived according to the equation shown below [19]. This equation results from 

undeformed 
configuration current, deformed 

configuration

deformed configuration in 
which aging took place

𝑭𝑭

𝑭𝑭�
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the choice of the Jaumann stress rate to calculate an objective time derivative of the 
stress tensor [18].  
𝛿𝛿𝝉𝝉 − 𝛿𝛿𝑾𝑾 𝝉𝝉 + 𝝉𝝉 𝛿𝛿𝑾𝑾 = 𝐽𝐽 ℂ ∶ 𝛿𝛿𝑫𝑫 (25) 

In this equation, 𝝉𝝉 = 𝐽𝐽 𝝈𝝈 is the Kirchhoff stress tensor, 𝑾𝑾 is the spin tensor and 𝑫𝑫 is 
the rate of deformation tensor. Since Abaqus uses an Updated Lagrangian element 
formulation, the material tensor needs to be derived by considering the virtual rate 
of deformation 𝛿𝛿𝑫𝑫 [20]. The symbol 𝛿𝛿 in equation (25) is used for virtual quantities. 
Through the equations (8), (24) and (25) the material model is completely defined.  

4 Comparison of the Model Prediction to Experimental Data 

In the following, experimental data of a fluorine-based elastomer used in sealing ap-
plications is considered and compared to simulation results. The compression set 
was tested for several different time durations from 24 hours to 1008 hours. These 
tests were carried out at different temperatures and then shifted to ambient temper-
ature. The shifting is based on the time-temperature equivalence. Figure 2 shows 
the resulting master curve which is valid at ambient temperature. The diagram con-
tains values up to 300,000 hours (approx. 34 years). Furthermore, the model predic-
tion of the Achenbach model is shown. From equation (6), the formula of the com-
pression set can be obtained:  

𝑐𝑐𝑠𝑠(𝑡𝑡) = �1 −  𝑒𝑒−
𝑡𝑡
𝜏𝜏� ∙ 100 % (26) 

The curve shown in figure 2 is based on an aging parameter of 𝜏𝜏 = 3800 𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑.  

 
Figure 2: Model prediction and experimental data of compression set at 23°C 

It can be seen that the Achenbach model predicts the behavior of the material very 
well from medium to long time durations. For short time durations up to 50,000 hours 
(= approx. 6 years), the model predicts lower values for the compression set. How-
ever, since the simulation method will be used for lifetime predicitons, the short time 
scales are not relevant. For the purpose of lifetime predictions, the Achenbach model 
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shown in Figure 2 is suited very well. And it is remarkable that the model predicts 
the aging behavior very well by only using one single material parameter.  

5 Application of the Method to Analyse the Lifetime of an O-ring 

In the following an O-ring sealing system will be considered. The cross section di-
ameter of the O-ring is 5 mm. To reduce the computational effort, only a section of 
the complete O-ring will be modelled as displayed in Figure 3. The O-ring is sealing 
a vacuum chamber and accordingly, a pressure of 1 bar is applied on the left in figure 
3. The material parameters of the fluorine-based elastomer are listed in Table 1, 
compare also chapter 4.  

 
Figure 3: Model of the O-ring and the surrounding hardware 

Table 1: Parameters of the material model, valid at 23°C 
 Symbol Value (d = days) 
Neo-Hooke parameter 𝐶𝐶10 1.29 𝑁𝑁/𝑚𝑚𝑚𝑚² 
Achenbach parameter 𝜏𝜏 3800 𝑑𝑑 

 
Two simulations with different aging times are considered in the following. The first 
simulation is divided in three steps and considers a time duration of 15 years: 

1) Assembly of the O-ring 
2) Aging for 15 years 
3) Disassembly of the O-ring 

After the disassembly, the permanent deformation due to the compression set can 
be displayed. Figure 4 shows these results, the colour describes the displacement. 
This result allows to determine the remaining height of the unloaded O-ring which is 
4.25 mm after 15 years. Hence, it is reduced by 0.75 mm. Since the groove height 
is 4 mm, 0.25 mm of the O-ring are remaining for the elastic deformation which gen-
erates the sealing force.  

Groove and plate
modeled as rigid bodies

O-ring
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Figure 4: Resulting permanent displacement after 15 years of aging 

The second simulation is also divided in three steps and considers a time duration 
of 37 years: 

1) Assembly of the O-ring 
2) Aging for 37 years 
3) Disassembly of the O-ring 

The diagram below displays the decrease of the sealing force over time. It can be 
seen that it reaches 0 N/cm after 37 years. This is due to the fact that the compres-
sion set reaches 100 % after 37 years at 23°C.  
For the application in which this O-ring is operating, it is known from experience that 
the sealing force should be min. 1 N/cm to guarantee the sealing function. Hence, 
from the FEA results it can be derived that the lifetime of the sealing system is ap-
proximately 32 years.  

 
Figure 5: Decrease of the sealing force over time 

4.25 mm
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6 Summary, Conclusion and Outlook 

The present contribution describes the effects which are happening during aging of 
elastomers and provides their microstructural explanation as far as known today. 
Next, an overview over research work dealing with modelling the compression set is 
given. The model of Achenbach is used to develop a numerical method which allows 
to capture the compression set within an FEA. This method is implemented into an 
Abaqus user subroutine (UMAT). Finally, the method is applied to an O-ring which 
seals a vacuum chamber and the resulting permanent deformation after long time 
duration is predicted. Furthermore, the decrease of the sealing force over 37 years 
is calculated.  

The prediction of the Achenbach model for an fluorine-based elastomer compares 
well against experimental data when medium or long time scales are considered. 
The FEA based method works well to analyse the permanent deformation (set) of 
fluorine-based elastomers after years of aging. Furthermore, it allows to predict the 
decrease of the sealing force.  

Future work could consider more complex mathematical functions with more param-
eters to model the aging effects. This might allow to have an improved fitting accu-
racy over the whole time duration. Furthermore, the method could be extended to 
other hyperelastic laws or combined with viscoelasticity. Finally, the presented ap-
proach could be coupled with additional physical and chemical effects. For example, 
the material model could be coupled with the method of Plagge et al. which allows 
to capture the Mullins effect in a very accurate way [21]. This way the damage 
through cyclic loading and the compression set through aging could be included in 
FEA.  
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8 Nomenclature 

Variable Description Unit 
𝑩𝑩 Left Cauchy-Green strain tensor [−] 
𝑩𝑩� Isochoric part of the left Cauchy-Green strain tensor [−] 
𝑩𝑩𝑣𝑣 Volumetric part of the left Cauchy-Green tensor  
𝑩𝑩��  Isochoric part of the left Cauchy-Green strain tensor, 

where the reference configuration (stress-free configu-
ration) is the deformation state in which the aging took 
place 

[−] 

𝑪𝑪 Right Cauchy-Green strain tensor [−] 
𝑪𝑪� Isochoric part of the right Cauchy-Green strain tensor [−] 

𝑪𝑪�� Isochoric part of the Cauchy-Green strain tensor, where 
the reference configuration (stress-free configuration) is 
the deformation state in which the aging took place 

[−] 

ℂ 4th order material tensor [𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 
𝐶𝐶10 Neo-Hooke material parameter [𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 
𝛿𝛿𝑖𝑖𝑖𝑖 Kronecker Symbol 𝑁𝑁 𝑚𝑚𝑚𝑚2⁄  
𝛿𝛿𝑫𝑫 Variation of the rate of deformation tensor 𝑫𝑫 (virtual rate 

of deformation) 
[1 𝑠𝑠𝑠𝑠𝑠𝑠⁄ ] 

𝑭𝑭 Deformation gradient [−] 
𝑭𝑭� Isochoric part of the deformation gradient [−] 
𝑭𝑭𝑣𝑣 Volumetric part of the deformation gradient  
𝑭𝑭� Deformation gradient, where the reference configura-

tion (stress-free configuration) is the deformation state 
in which the aging took place 

[−] 

𝜆𝜆  Principal stretch in a one-dimensional stress state (ten-
sile test), eigenvalue of the deformation gradient 

[−] 

𝝈𝝈 Cauchy stress tensor, sum of primary and secondary 
network of the elastomer 

[𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 

𝒔𝒔 Deviatoric part of the Cauchy stress tensor, resulting 
from the primary network  

[𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 

𝒔𝒔� Deviatoric part of the Cauchy stress tensor, resulting 
from the secondary (new) network 

[𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 

𝑺𝑺 Second Piola-Kirchhoff stress tensor, sum of primary 
and secondary network of the elastomer 

[𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 

𝑺𝑺� Deviatoric part of the second Piola-Kirchhoff stress ten-
sor 

[𝑁𝑁 𝑚𝑚𝑚𝑚2⁄ ] 

𝜏𝜏 Material parameter in the Achenbach model [𝑑𝑑] 
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