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Predict the Lifetime of Sealing Systems by Finite

Element Analysis
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In many cases, the lifetime of a sealing system is limited by the compression set of the elas-
tomer. Therefore, it would be beneficial to have a numerical procedure which can capture the
compression set. This contribution starts with an overview of the existing literature in this field.
Next, a method based on previous research work is developed and described. It allows to
predict both the decrease of the sealing force and the resulting permanent deformation. This
prediction can be done for long time scales. The results of this method are compared to ex-
perimental values of a fluorine-based elastomer. Finally, the aging of an O-ring is simulated
by the developed method.

1 Introduction

The lifetime of sealing systems relies on various parameters, depending on the ma-
terial and the application. In case of thermoset elastomer seals, the sealing function
and lifetime often is limited by the permanent deformation of the sealing material
under compression which is called compression set [1]. Upon the lifetime of the seal-
ing material the cross-linking chemical bonds holding the polymer chains together
can break down or can rearrange at different positions. This leads to plastic strains
which are not driven by the stress level as it would be in classical rate-independent
plasticity. It is a time-driven chemical reaction with a given rate and accordingly, the
unloaded shape of the seal will continuously change.

The permanent deformation of the seal also causes a decrease of the stresses and
hence, a decrease of the corresponding sealing force. An appropriate simulation
method can predict the permanent deformation and stress relaxation to estimate the
lifetime of the sealing system. It requires a material model which is capable to de-
scribe the compression set and the corresponding stress relaxation.

Chapter 2 contains a description of aging effects in elastomers and their microstruc-
tural explanation. Furthermore, it contains a literature overview over research work
in the area of compression set modeling in general and in sealing technology appli-
cations. In chapter 3, a method based on previous research work is developed and
described. The method can be used to carry out lifetime predictions of sealing sys-
tems.

In chapter 4, the prediction of the model is applied to a fluorine-based elastomer and
compared to experimental results. Finally, the method is applied to an O-ring and
the results are discussed in chapter 5.
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2 State of the Art

In order to model the compression set, the basic understanding of aging is crucial.
Therefore, the knowledge about its explanation on a molecular level is described
first. In subchapter 2.2, the scientific work around modelling the compression set in
FEA is reported.

2.1 Aging Effects in Elastomers and their Microstructural Explanation

Elastomeric seals can be exposed to cyclic or continuous media during their service
life. As a result, their mechanical performance is degraded over time which is com-
monly known as aging. Exposure to air, water, exposure to UV light or ozone, thermal
oxidation, or chemically reactive environments can all cause aging, see e.g. Bahro-
loloumi [2]. Unless used in vacuum or chemically inert environments, almost all pol-
ymers are susceptible to oxidation. Oxidation is a thermally driven degradation which
occurs at slow rates at ambient temperatures. Thus, to accelerate oxidation and pre-
dict the lifetime of seals, aging tests are performed at elevated temperatures [3].

In an elastomer formulation, there are mainly 4 ingredients: base cross-linkable pol-
ymer, curing agents, fillers and stabilizers. The viscoelastic properties of an elasto-
meric material are inherent from the polymer which is the primary ingredient of the
formulation. The polymer chains are cross-linked to maintain the shape and viscoe-
lasticity of the moulded parts [4]. During the aging process, any of these ingredients
can be affected. However, the changes of the primary base polymer will affect the
material properties the most.

When the temperature is increased to elevated levels, the primary valance bonds in
polymers can start to break which leads to chain scission. If scission occurs between
the main chain and the side groups, double bonds and crosslinks may start to form.
In this case, polymers stabilize upon heating and a relaxation of stresses with time
occurs due to the chemical reactions [5, 6]. In the high temperature regime, elasto-
mers can either soften or harden, either of which eventually leads to a loss in their
desirable properties. Depending on the aging type and mechanism, the cross-links
between the polymer chains can break. In that case the material will soften. If the
polymer chains start to bind upon heating, the material hardens due to excessive
cross-linking. Hardened elastomers will become more susceptible to forming cracks
under stresses [7]. Exposure to the external media can also cause chain-scission or
breakage of intermolecular cross-links leading to a loss in material properties.

Finally, under compressive stresses aging effects will be more severe which was
investigated by Li et al. [8]. They tested loaded and unloaded EPDM gaskets and
observed this negative effect of compressive stresses on the aging behaviour.

2.2 Modelling the Compression Set in Finite Element Analysis

During aging bonds within the 3-dimensional network are relocating in a stress-free
configuration. This leads to a decrease of the stresses and to a permanent defor-
mation which increases over time. Achenbach considers this relocation procedure to
develop a model which is able to capture the corresponding aging effects and the
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compression set [9, 10]. He starts from the Neo-Hookean hyperelastic model which
can be formulated by using the number of cross-links N in the rubber network:

0=2Co(A—A12)=2Nc(A—-12) (1)

In this equation, ¢ is the Cauchy stress, C,, is the Neo-Hooke material parameter, 1
is the principal stretch, N is the number of cross-links in the rubber and c is another
material parameter. While c is constant, N = N(t) is already modeling the stress
decrease when bonds are broken.

Equation (1) is the 1-dimensional representation of the Neo-Hookean law and the

corresponding principal stretch in a tensile test is given by equation (2) where [ is

the deformed length and [, is the undeformed length of the tensile specimen.

l

1=— (2)
Ly

The Neo-Hookean material parameter C,, is directly connected to the shear modulus

of the material [11], see equation below.

G = 2 Clo (3)
Next, Achenbach introduces the stress contribution by the relocated bonds — he is
defining a “second” network of bonds where the number of curing bonds is given by
M. Furthermore, this second network has a different undeformed configuration which
is the current deformed state. This new undeformed configuration is described by

the principal stretch . Finally, Achenbach formulates the equation below for the total
Cauchy stress resulting from both the original and the new network.

0=2Nc(A—A2)+2Mc (A1t —-2"21?) (4)
Here, the total number of bonds is assumed to be constant.
Ny = N(t) + M(t) )

For the change of N over time, Achenbach proposes an exponential law:

N(E) = Ny er 6)

From equation (5) and (6), the formula for M(t) can be derived too. Finally,
Achenbach transfers this approach to a 3-dimensional stress state and formulates
the stress equation as shown below [10].

oW, tod (oW . (7)
aijz_p6ij+26_l_13ij+2_£.=oa a_fl Bijd‘[

Here, p is the hydrostatic pressure, B;; are the coordinates of the left Cauchy-Green
tensor, W, is the hyperelastic strain energy density function of the old network and
W is the strain energy density function of the “second” network which can change
continuously. This approach assumes a split of the strain energy density function
into an isochoric and a volumetric part [12]. The material is considered to be incom-
pressible and therefore, only the isochoric part remains which is described by W,



548 21%ISC

respectively W. Accordingly, the strain energy function W, is a function of the first
invariant of the isochoric part of the right Cauchy-Green tensor which is symbolized
by I; while I; would be the first invariant of the complete Cauchy-Green tensor. For
the second network, only one symbol will be introduced which describes the first
invariant of the isochoric part of the right Cauchy-Green tensor: [;. This is describing
the deformation of the second or new network and this has a different undeformed
configuration which can change over time.

Accordingly, the isochoric strain energy density function of Achenbach’s model is:
o tdw
W=NC10(11_3)+f d_dT
Yo (8)
o tdm .
=NC10(11_3)+J- _C10 (11_3) dT
=0 dr

Here, N and M are the unified numbers of bonds according to the equation below.
N = N/N,
M=M/M,

The left summand in equation (8) belongs to the well-known Neo-Hookean strain

energy density function if N = 1, see e.g. [13]. The left summand in equation (8) is

decreasing over time which describes the break down of the primary network of

bonds. The right summand (the integral) is describing the build up of the new network
(secondary network).

©)

Lion and Johlitz also develop a model to describe the compression set in elastomers
and they use a time-dependent approach which is similar to the one Achenbach
proposed [14]. They also assume that the old or primary network of bonds is breaking
down continuously while a new network (secondary network) is building up in the
deformed state. Accordingly, they formulate a split strain energy density function as
shown in equation (8). In addition, they consider a volumetric deformation and the
corresponding strain energy density function and introduce a similar time depend-
ence to the volumetric response. This allows them to capture volume changes due
to aging effects. They derive all equations of the required continuum mechanics in
detail.

Johlitz is continuing this work and proposes two new material models to capture
aging effects in elastomers [15]. The first model is based on a split of the isochoric
strain energy density function into two parts: one referring to the old (primary) net-
work of bonds and one referring to the new (secondary) network of bonds. This ap-
proach is similar to the approaches described above. However, while Achenbach is
formulating this on the basis of the Neo-Hookean law of hyperelasticity, Johlitz is
using a Mooney type of strain energy density. Johlitz also shows that for the case of
constant temperatures his model describes the humber of network bonds by the
same exponential law as proposed by Achenbach (see equation (6)).
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The second model Johlitz introduces couples diffusion and aging effects [15]. It al-
lows to model aging effects depending on the concentration of oxygen inside the
elastomer. This dependence can be inhomogeneous and requires the solution of the
concentration field in addition to the displacement field. For both models, Johlitz de-
rives all continuum equations for the three-dimensional case and implements them
into the finite element code PANDAS.

Bahrololoumi et al. develop a model to describe aging effects which is based on a
decay function integration into the strain energy density function [2]. Bahrololoumi et
al. derive the stress-strain relationships by using the second Piola-Kirchhoff stress
tensor and they are able to capture the decay of mechanical properties in a 3D stress
state. The aging effects are modelled by referring to the undeformed configuration.
They also derive the material tangent tensor and implement their model into an FEA
code by using the Total Lagrangian element formulation. Details to the Total Lagran-
gian formulation and its implementation into the FEA code Z88 are described by Rieg
et al. [16].

Maiti et al. are modeling the compression set of a silicone elastomer which is caused
by radiation [17]. They use the model of Tobolsky to formulate a one-dimensional
relationship between the permanent set, the radiation dose and the strain at which
the radiation-induced aging takes place. Their model allows to predict the stress-
strain behavior, the permanent set and the crosslink density of the rubber.

3 Method to Model the Compression Set in Finite Element Analysis

In the previous chapter several methods to capture compression set are listed and
described. The model of Achenbach was already successfully applied to sealing sys-
tems and it is able to capture both compression set and compressive stress relaxa-
tion. Furthermore, it can be combined with time-temperature-shifting which allows to
use short time tests to calibrate a long-term material model. Therefore, the model of
Achenbach will be used in the following.

The material model will be implemented by using a split of the deformation into an
isochoric and a volumetric part. Accordingly, deformation gradient F, the right Cau-
chy-Green tensor € and the left Cauchy-Green tensor B are split as shown below
[12].

F=F,,F=]%1 ]‘%F (10)
c=J5¢ (11)
B, =1§ 1; B =1‘§B (12)

For each quantity, the volumetric part is symbolized by the index v and the isochoric
part is symbolized by the accent , for example B. It will be assumed that the ma-
terial behaves incompressible, hence the volumetric part of the deformation vanishes
and J = 1 holds. Nevertheless, the determinant J will be left a variable towards the
end of this chapter.
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In order to use the Achenbach model within FEA, a user subroutine has to be imple-
mented. The user subroutine will be developed to be used by the FEA code Abaqus.
It was chosen to use a user subroutine of the type UMAT (user material subroutine)
which provides the highest level of freedom to model extensions of the constitutive
law. Furthermore, it leads to the fastest convergence when implemented efficiently.

In the following, the strain energy density function of Achenbach’s model (8) will be
used. The Cauchy stress tensor can be split into three parts: a hydrostatic part, a
deviatoric part s belonging to the primary elastomer network and a deviatoric § part
belonging to the new, secondary elastomer network.

o=-pl+s+5§ (13)

The derivation with respect to the right Cauchy-Green tensor C, pushed forward to
the current deformation state leads to the Cauchy stress tensor [18]. Equation (14)
shows this operation for the deviatoric part of the primary network.

1o 2 oW, .

S—]FSF —]FaCF (14)
Here, S is the deviatoric part of the second Piola-Kirchhoff stress tensor. Since the
strain energy density function of the primary network Wj is formulated as a function
of the first invariant of the isochoric part of right Cauchy-Green tensor, the chain rule
can be used to calculate the derivatives. Wriggers derives the chain rule for this case
as shown below [18].

oW, aw, ac
0 i 0 kl (1 5)

ac 2 1

— =73 ——Cc? 16

ac- 1’ (]E 3¢°® C) (18)
The index notation of equation (16) is shown below.

aC;; 2 1 ~

L= (Bie -5 € € (17)
In equation (16), E is a fourth order unit tensor defined as:

1
Eijr = E(5ik5jz +846k) (18)

Inserting (15)-(18) into (14) leads to the following result for the deviatoric stresses.

2 ~ _2/ 1 -1
Sy = 7 Fi 5 ¥ Cuo S 75 (B =3 Con G (19)
After some transformations this form can be derived:
2 — _2 1 1 _2
siy= 7 N Cio 3 J775 5 (Fim i + Fom Fym) =3 1775 Coum 8 (20)
=By; Cmm

It can be seen that only the isochoric parts of the deformation tensor will be remain-
ing. Since C,,,,, = B,,,, holds, the deviatoric stresses from the primary network finally
becomes:
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y=;ﬁqﬁ{§—%w@)q 21)
Very similar the deviatoric stresses of the newly formed, secondary elastomer net-
work can be derived. However, in the secondary network the stress-free configura-
tion is different. It is the configuration in which this network established and this can
be different for each “single” bond which re-bonded. Therefore, a new deformation
gradient F is introduced which describes the deformation between the configuration
in which the aging took place and the current configuration. Since the aging can take
place at different times with different configurations, this deformation gradient is a
function of time F = F(t). This time dependence also occurs in quasi-static loading
conditions where during aging the deformation is continuously changing. Figure 1
displays the definition of this additional deformation gradient.

deformed configuration in
which aging took place

undeformed current, deformed

configuration . .
configuration

\\\\__’///2

Figure 1: Definition of the deformation gradients

™)

C

Accordingly, the stresses of the secondary network can be derived as follows.

1 2 oW _ o =
§=-FSFT=2F—FT; C=F"F (22)
J J ac
By the same steps as for the primary network, the final expression for the deviatoric

stresses of the secondary network can be obtained.

t 2 dm 1

s=¢ j {B——W@)} 23)
= 0] dT

Equation (24) defines the total Cauchy stress tensor.

= 1+21\76 {E 1t 1_31}+C ICZdM
=D 7 10 37”() 10 o]dT

For the development of the code implementation, the 4" order material tensor C has
to be derived according to the equation shown below [19]. This equation results from

{B—lnw)}m (24)
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the choice of the Jaumann stress rate to calculate an objective time derivative of the
stress tensor [18].

Sft—SWrt+tédW=J]C:6D (25)

In this equation, T = J ¢ is the Kirchhoff stress tensor, W is the spin tensor and D is
the rate of deformation tensor. Since Abaqus uses an Updated Lagrangian element
formulation, the material tensor needs to be derived by considering the virtual rate
of deformation 6D [20]. The symbol § in equation (25) is used for virtual quantities.
Through the equations (8), (24) and (25) the material model is completely defined.

4 Comparison of the Model Prediction to Experimental Data

In the following, experimental data of a fluorine-based elastomer used in sealing ap-
plications is considered and compared to simulation results. The compression set
was tested for several different time durations from 24 hours to 1008 hours. These
tests were carried out at different temperatures and then shifted to ambient temper-
ature. The shifting is based on the time-temperature equivalence. Figure 2 shows
the resulting master curve which is valid at ambient temperature. The diagram con-
tains values up to 300,000 hours (approx. 34 years). Furthermore, the model predic-
tion of the Achenbach model is shown. From equation (6), the formula of the com-
pression set can be obtained:
t

¢ (t) = (1 — e‘?) -100 % (26)

The curve shown in figure 2 is based on an aging parameter of r = 3800 days.
FEA Model vs. Experimental Data
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Figure 2: Model prediction and experimental data of compression set at 23°C

It can be seen that the Achenbach model predicts the behavior of the material very
well from medium to long time durations. For short time durations up to 50,000 hours
(= approx. 6 years), the model predicts lower values for the compression set. How-
ever, since the simulation method will be used for lifetime predicitons, the short time
scales are not relevant. For the purpose of lifetime predictions, the Achenbach model
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shown in Figure 2 is suited very well. And it is remarkable that the model predicts
the aging behavior very well by only using one single material parameter.

5 Application of the Method to Analyse the Lifetime of an O-ring

In the following an O-ring sealing system will be considered. The cross section di-
ameter of the O-ring is 5 mm. To reduce the computational effort, only a section of
the complete O-ring will be modelled as displayed in Figure 3. The O-ring is sealing
a vacuum chamber and accordingly, a pressure of 1 bar is applied on the left in figure
3. The material parameters of the fluorine-based elastomer are listed in Table 1,
compare also chapter 4.

O-ring

Groove and plate
modeled as rigid bodies

Figure 3: Model of the O-ring and the surrounding hardware

Table 1: Parameters of the material model, valid at 23°C

Symbol Value (d = days)
Neo-Hooke parameter Cio 1.29 N/mm?*
Achenbach parameter T 3800 d

Two simulations with different aging times are considered in the following. The first
simulation is divided in three steps and considers a time duration of 15 years:

1) Assembly of the O-ring

2) Aging for 15 years

3) Disassembly of the O-ring
After the disassembly, the permanent deformation due to the compression set can
be displayed. Figure 4 shows these results, the colour describes the displacement.
This result allows to determine the remaining height of the unloaded O-ring which is
4.25 mm after 15 years. Hence, it is reduced by 0.75 mm. Since the groove height
is 4 mm, 0.25 mm of the O-ring are remaining for the elastic deformation which gen-
erates the sealing force.
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_

U, U3 z-distance of unloaded O-ring after aging:

42.655e-01 425 mm
+1.8322-01
+1.008e-01
+1.8528-02
-6.380e-02
-{461e-01
-3.284e-01
-3.108e-01
-3.931e-01
-4.754e-01
-5.577e-01
-6.400e-01
-7.224e-01

Figure 4: Resulting permanent displacement after 15 years of aging

The second simulation is also divided in three steps and considers a time duration
of 37 years:

1) Assembly of the O-ring

2) Aging for 37 years

3) Disassembly of the O-ring
The diagram below displays the decrease of the sealing force over time. It can be
seen that it reaches 0 N/cm after 37 years. This is due to the fact that the compres-
sion set reaches 100 % after 37 years at 23°C.

For the application in which this O-ring is operating, it is known from experience that
the sealing force should be min. 1 N/cm to guarantee the sealing function. Hence,
from the FEA results it can be derived that the lifetime of the sealing system is ap-
proximately 32 years.
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: i Njcm after 11900 days (= 32 years) \\
0. i i \
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Figure 5: Decrease of the sealing force over time
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6 Summary, Conclusion and Outlook

The present contribution describes the effects which are happening during aging of
elastomers and provides their microstructural explanation as far as known today.
Next, an overview over research work dealing with modelling the compression set is
given. The model of Achenbach is used to develop a numerical method which allows
to capture the compression set within an FEA. This method is implemented into an
Abaqus user subroutine (UMAT). Finally, the method is applied to an O-ring which
seals a vacuum chamber and the resulting permanent deformation after long time
duration is predicted. Furthermore, the decrease of the sealing force over 37 years
is calculated.

The prediction of the Achenbach model for an fluorine-based elastomer compares
well against experimental data when medium or long time scales are considered.
The FEA based method works well to analyse the permanent deformation (set) of
fluorine-based elastomers after years of aging. Furthermore, it allows to predict the
decrease of the sealing force.

Future work could consider more complex mathematical functions with more param-
eters to model the aging effects. This might allow to have an improved fitting accu-
racy over the whole time duration. Furthermore, the method could be extended to
other hyperelastic laws or combined with viscoelasticity. Finally, the presented ap-
proach could be coupled with additional physical and chemical effects. For example,
the material model could be coupled with the method of Plagge et al. which allows
to capture the Mullins effect in a very accurate way [21]. This way the damage
through cyclic loading and the compression set through aging could be included in
FEA.
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Nomenclature

Variable

w P W

a) o o

PN

)

%]

Description

Left Cauchy-Green strain tensor

Isochoric part of the left Cauchy-Green strain tensor
Volumetric part of the left Cauchy-Green tensor

Isochoric part of the left Cauchy-Green strain tensor,
where the reference configuration (stress-free configu-
ration) is the deformation state in which the aging took
place

Right Cauchy-Green strain tensor
Isochoric part of the right Cauchy-Green strain tensor

Isochoric part of the Cauchy-Green strain tensor, where
the reference configuration (stress-free configuration) is
the deformation state in which the aging took place

4™ order material tensor
Neo-Hooke material parameter
Kronecker Symbol

Variation of the rate of deformation tensor D (virtual rate
of deformation)

Deformation gradient
Isochoric part of the deformation gradient
Volumetric part of the deformation gradient

Deformation gradient, where the reference configura-
tion (stress-free configuration) is the deformation state
in which the aging took place

Principal stretch in a one-dimensional stress state (ten-
sile test), eigenvalue of the deformation gradient
Cauchy stress tensor, sum of primary and secondary
network of the elastomer

Deviatoric part of the Cauchy stress tensor, resulting
from the primary network

Deviatoric part of the Cauchy stress tensor, resulting
from the secondary (new) network

Second Piola-Kirchhoff stress tensor, sum of primary
and secondary network of the elastomer

Deviatoric part of the second Piola-Kirchhoff stress ten-
sor

Material parameter in the Achenbach model
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