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Advancing Lubrication Calculation: A Physics-Informed Neural 
Network Framework for Transient Effects and Cavitation  
Phenomena in Reciprocating Seals 

Faras Brumand-Poor, Florian Barlog, Nils Plückhahn, Matteo Thebelt, 
Katharina Schmitz 

In numerous technical applications, gaining insights into the behavior of tribological systems 
is crucial for optimizing efficiency and prolonging operational lifespans. Experimentally inves-
tigating these systems, such as reciprocating seals in fluid power systems, is expensive and 
time-consuming. An alternative is using elastohydrodynamic lubrication (EHL) simulation 
models, which however require extensive computational time. Physics-informed machine 
learning (PIML), particularly physics-informed neural networks (PINNs), offers an accelerated 
solution by integrating data-driven and physics-based methods into the training process to 
solve EHL's governing equations. This study demonstrates PINNs' capability to efficiently 
model tribological systems and accurately predict pressure dynamics and cavitation, show-
casing their potential to enhance computational efficiency. 

1 Introduction 

The performance, efficiency, and durability of components in technical systems are 
significantly affected by their lubricated tribological contacts, such as those found in 
seals. Due to the complexity of the occurring phenomena in lubricated contacts, 
grasping a deeper understanding has proven to be a challenge. Especially, the dy-
namic friction, mainly described by fluid dynamics, is crucial for the accurate model-
ing of these contacts. Analytical model approaches are often not feasible without 
further simplification and neglect of certain phenomena, resulting in inaccurate mod-
els. Experimental measurements to obtain an understanding of the tribological be-
havior, are typically time-consuming and expensive. A commonly applied approach 
is modeling the system with an elastohydrodynamic lubrication (EHL) simulation, 
which employs the Reynolds equation to compute pressure distribution and the de-
formation of the contact surfaces.  

An EHL simulation model for reciprocating seals, the ifas-DDS, was developed at 
the Institute for Fluid Power Drives and Systems of the RWTH Aachen (ifas). This 
model computes the friction by solving the hydrodynamics within the sealing contact, 
described by the Reynolds equation, and considering the contact mechanics and the 
seal deformation. In prior studies, the EHL model was validated with experimental 
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data [1]. A major limitation of this approach is the extensive computation time nec-
essary to solve the underlying equations with numerical methods. Increasing com-
putational resources might improve this issue, but is not always viable, particularly 
as simulation complexity grows and real-time computation for applications like con-
trol systems or digital twins is required. 

Machine learning algorithms, like neural networks, represent a promising alternative 
to classical EHL simulations due to their fast computation ability after an initial train-
ing session. However, traditional neural networks are typically not implemented in 
such a manner that the underlying physical principles are integrated into the network. 
The main goal of the utilization of a neural network, typically in regression tasks, is 
to minimize the deviation of the network’s prediction to a desired value. This purely 
data-based approach might result in a good prediction for the provided data but may 
lead to overfitting, which means that new data points inside the training domain and 
especially outside of it are predicted with a high error. An advancement in the field 
of neural networks is physics-informed neural networks (PINNs) tackling this chal-
lenge by incorporating physical laws into the network’s training, thereby enhancing 
the networks' predictive accuracy and generalizability across unfamiliar data re-
gimes. PINNs are a class of machine learning solvers for partial differential equations 
(PDEs). Their main distinguishment from the traditional neural network is, that their 
training process is not purely data-driven. The optimal parameter configuration of a 
given network structure is determined by the so-called loss, which is computed by 
data in the case of a conventional neural network. In the case of PINNs, the loss also 
incorporates physical laws underlying the investigated problem. The physical laws 
are described by initial and boundary conditions and the residuals of the PDEs. Sev-
eral research has been conducted on the hydrodynamic part of EHL simulations, 
neglecting deformation and friction. Recent developments in this area like the studies 
by Almqvist [2] and others, showcase the potential of PINNs to combine the precise-
ness of distributed simulation models with the computational efficiency of neural net-
works, ensuring robust, accurate, and faster computations. 

This contribution demonstrates the capability of PINNs to solve the Reynolds equa-
tion with dynamic contact geometry changes and cavitation modeling applied to seal-
ing contact with housing. For this investigation, a hydrodynamic-PINN (HD-PINN) 
framework, which has previously been validated for stationary scenarios without cav-
itation [3], is applied. This framework is extended and applied to two scenarios. 
Firstly, a dynamic change of the investigated gap height and secondly a divergent 
gap with cavitation. Like the prior mentioned studies, this work focuses on the hy-
drodynamic part of the EHL. It focuses on computing the pressure and cavitation 
distribution while neglecting friction and contact mechanics. Deformation is artificially 
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modeled by a constant movement of the seal, neglecting any pressure dependen-
cies. The following section presents the considered model for hydrodynamic lubrica-
tion. In section 3, PINNs are described in general. The subsequent section 4 pre-
sents the HD-PINN framework, the extensions applied to it, the two investigated sce-
narios, and the physics-based losses. Subsequently, the results of the PINNs are 
shown and validated by a modified version of the ifas-DDS, referred to as the rigid 
DDS, neglecting the prior mentioned factors of the EHL. Eventually, a summary and 
conclusion are provided in section 6. 

2 Hydrodynamic Lubrication 

Modeling tribological systems by EHL simulations is a common approach to obtain-
ing a detailed description of friction, leakage, and wear within lubricated mechanical 
interfaces. EHL models assess the dynamic relationship between surfaces in contact 
with lubricants, resolving the surface deformation and the hydrodynamic pressure 
within the contact area. These simulations are essential tools for designing and op-
timizing tribological contacts in various technical applications.  

The ifas-DDS is a distributed parameter simulation model, which simulates complex 
interactions between a reciprocating seal and its mating countersurface. One essen-
tial aspect of this simulation is the consideration of a lubricant, which separates the 
sealing and the housing and allows a characterization of the sealing behavior. The 
model consists of two main parts, first the deformation determined by the finite ele-
ment software Abaqus and second the hydrodynamic part described by the Reyn-
olds equation, which is integrated into Abaqus via user subroutines.  
The focus of this research lies in solving the Reynolds equation, therefore simplifying 
the model by neglecting the deformation of the contacting surfaces, the contact me-
chanics, and the friction. Within the scope of this research, the investigation focuses 
on hydrodynamic lubrication. Therefore, the rigid DDS is employed instead of the 
ifas-DDS. 
In this study, the PINN is validated by the rigid DDS. This comparison focuses on 
the solution process of two solvers for the same set of equations, namely the Reyn-
olds equation and the Fischer-Burmeister equation. The DDS extends the Reynolds 
equation by the flow factors 𝛷𝛷𝜏𝜏 and 𝛷𝛷𝑝𝑝 as described by Patir and Cheng [4], thus 
allowing the consideration of surface topography effects on the hydrodynamic lubri-
cation. Furthermore, the cavitation is modeled by integrating the Jakobsson-Floberg-
Olsson equation, which introduces the cavitation fraction 𝜃𝜃 to consider the formation 
of the gaseous phase, e.g., due to vaporization of solved air in the lubricant due to 
localized pressure drops [5]. The cavitation fraction describes the gaseous phase’s 
local volume fraction between 0 at no cavitation to 1 for full cavitation. 
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The original Reynolds equation, as stated by Osborne Reynolds in 1886 is extended 
to model the cavitation. It is implemented into the DDS and is detailed as follows [6]: 

 
𝑣𝑣
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𝜕𝜕𝜕𝜕
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𝜕𝜕𝜕𝜕

�𝛷𝛷𝑝𝑝𝜌𝜌ℎ3
𝜕𝜕𝜕𝜕
𝜕𝜕𝜕𝜕
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𝜕𝜕
𝜕𝜕𝜕𝜕
�(1 − 𝜃𝜃)𝜌𝜌ℎ� =  0 (1) 

 
Cavitation occurs when the pressure drops below the vaporization pressure which is 
assumably zero in this work [7]. To describe the relation between pressure and cav-
itation, the Fischer-Burmeister equation is used: 
 

𝜕𝜕 + 𝜃𝜃 − �𝜕𝜕2 + 𝜃𝜃2 = 0 (2) 

 
The Jakobsson-Floberg-Olsson cavitation model can be used to track the lubrication 
distribution in tribological contacts with a limited amount of lubrication supply 
(starved lubrication), namely grease lubricated sealing contacts in pneumatic spool 
valves. Due to this modeling, a cavity fraction unequal zero does not necessarily 
describe the occurrence of cavitation but a partial filled sealing gap at the corre-
sponding position. A better interpretation is obtained by introducing the lubricant film 
height ℎ𝑙𝑙𝑙𝑙𝑙𝑙, which is calculated from ℎ and 𝜃𝜃: 
 

ℎ𝑙𝑙𝑙𝑙𝑙𝑙 = (1 − 𝜃𝜃) ℎ (3) 

3 Physics-Informed Neural Networks 

The previously introduced Reynolds equation describes the pressure distribution in 
lubricated contacts. When an analytical solution is not available, methods such as 
finite volume, elements, or differences are often used to solve tribological problems. 
As these methods are often computationally intensive and time-consuming, machine 
learning methods have shown promise in the past and are becoming increasingly 
important in the field of tribology [8, 9].  

Machine learning models, often referred to as black-box models, are typically data-
driven and advantageous due to their simplicity and adaptability. However, since 
their inception, hybrid models, which combine ideas from physics with data-driven 
methodologies, have become increasingly important. These models benefit from the 
common lack of adequate measurement data and a thorough mathematical descrip-
tion of the system, which makes data-driven and solely physics-based (white-box) 
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modeling approaches unfeasible [10]. Over time, several different hybrid model con-
figurations have been investigated, including sequential, parallel, and structured 
forms [11–13]. 

The development of hybrid models represents a promising advancement in the field 
of tribology, which is physics-informed machine learning (PIML). PIML is employed 
in tribology for a multitude of purposes, including the estimation of wear or damage 
and the evaluation of lubrication conditions in hydrodynamic interfaces. In contrast 
to traditional machine learning techniques, which predominantly utilize data-driven 
approaches (black-box models), PIML, particularly when utilizing PINNs, integrates 
physical principles to direct the learning procedure. Consequently, the outputs gen-
erated by these models are frequently both more accurate and dependable than 
those obtained by data-driven methods [14]. A PINN can be conceptualized as a 
hybrid model in contrast to the previously discussed models. It employs a neural 
network as the prediction model and incorporates residual terms into the loss func-
tion during training to integrate information from physical laws [15]. 

Hyuk [16] and Lagaris [17] did the fundamental work in physics-based regularization 
of neural networks after Cybenko [18] and Hornik [19] provided the necessary evi-
dence that neural networks can be used as universal function approximators. Alt-
hough Hyuk and Lagaris did not specifically use the term "physics-informed" in their 
study, their goals are similar to the ideas that are now recognized as the foundation 
of PINNs. Hyuk's method laid the foundation for the later field of PINNs by extending 
the loss function of the neural network to include the governing differential equation. 
Because computer resources were limited and computational algebra techniques 
were still in their infancy, the idea of combining physical rules with neural network 
training initially received little attention. However, with the advancement in hardware 
capabilities and the emergence of effective gradient computation methodologies, 
such as automatic differentiation, this theory has experienced a resurgence. 

In 2014, Owhadi was the first to reintroduce PIML, integrating past knowledge into 
the problem-solving process. He proposed that algorithms be enhanced by incorpo-
rating prior information and formulating PDE solutions as Bayesian inference prob-
lems [20]. Building upon these premises, Raissi and colleagues employed a proba-
bilistic machine learning technique to solve general linear equations using Gaussian 
processes, tailoring it particularly for integro-differential or partial differential equa-
tions [21, 22]. To address the challenge of solving nonlinear partial differential equa-
tions, this technique was subsequently expanded [23, 24]. Moreover, a noteworthy 
development was the creation of the PINN, which are mesh-free models that restruc-
ture the solution of PDEs into a loss function optimization problem [25]. To handle 
forward and inverse problems given by PDEs, Raissi presented PINNs, a new class 
of hybrid solvers [26–28]. In Figure 1 an exemplary PINN is shown. 
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Figure 1: An exemplary PINN. 

PINNs process their inputs (such as case-dependent parameters or position 𝜕𝜕 and 
time 𝜕𝜕) the same way as traditional neural networks. The values are processed by a 
multitude of layers to get the network’s output. In each layer, multiple neurons are 
connected to the ones of the previous and next layer. Each neuron executes math-
ematical operations like multiplying its inputs by a weight, adding a bias, and passing 
the result to an activation function to calculate its individual output. The sum of all 
these operations leads to the neural network’s ability to predict complex functions as 
its total output. 

The residual losses correspond to the residuals of the governing (physic) equations 
and thus is an unsupervised loss [14]. This loss is evaluated for specific spatial and, 
depending on the problem, time points, which are the so-called collocation points in 
position 𝑛𝑛𝑥𝑥 and time 𝑛𝑛𝑡𝑡. To integrate complex differential equations, the implemen-
tation of automatic differentiation in neural networks is exploited. This method effi-
ciently computes gradients of any order [29] with machine accuracy by applying dif-
ferential rules such as chain and product rules. In traditional neural networks, auto-
matic differentiation is used to calculate gradients for the update of the parameters, 
while in PINNs it can additionally be used to calculate derivatives for differential 
equations. 

The boundary condition (BC) and initial condition (IC) losses are used to ensure that 
the boundary and initial conditions are compliant with given targets. Hence, these 
two losses are supervised losses. It can be seen in Figure 1 that additional losses 
can occur. The example in that figure is a so-called hybrid PINN, which uses existing 
data for the given equations to contribute to a faster or more accurate solution. 
Therefore, a data loss, which corresponds to the classical data-driven loss, is added.  

Before introducing the methods and loss function used in this work in detail, the next 
section gives a brief overview of the use of PINNs in hydrodynamics. 
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The first publication to use PINNs for solving a simplified Reynolds equation was 
released by Almqvist in 2021 [2]. Over the next years, these ideas were expanded 
by Zhao et al., Li et al., and Yadav et al. who further developed a method to solve 
the 2D Reynolds equation for more complex problems [30–32]. Notable further pro-
gress was made by Rom who first used PINNs for solving the stationary Reynolds 
equation with the Jakobsson-Floberg-Olsson (JFO) cavitation model. He also intro-
duced soft constraints and collocation point updates to improve cavitation distribu-
tions in general but especially in areas with high gradients [33]. 

Additional advancements were made by Cheng et al., who used PINNs to solve the 
Reynolds equation for the JFO and Swift-Stieber (SS) cavitation models [34]. Xi et 
al. further enhanced the solution of PINNs by using hard and soft constraints [35]. 

Brumand et al. established that one PINN is sufficient to learn the solution of the 
stationary Reynolds equation for a multitude of different parameters, such as bound-
ary conditions [36]. 

A step towards using PINNs for a complete EHL simulation was done by Rimon et 
al. who used a simplified Reynolds equation as well as the Lamé equation for the 
description of the seal deformation [37]. 

Although the previously mentioned contributions show immanent progress in solving 
the complete Reynolds equation, it must be noted that most of these publications 
were focused on the implementation of PINNs themselves rather than on developing 
a hydrodynamic lubrication PINN framework. Thus, a significant amount of research 
and work must be done to solve the complete Reynolds equation in a way that can 
be used for the replacement of an EHL simulation. 

4 HD-PINN Framework 

4.1 Test Cases: Physics-Informed Loss and Conditions 

In this work, two special cases are investigated. Both scenarios are listed in Table 1. 
Firstly, the sealing movement and secondly the stationary cavitation are presented, 
afterwards the training procedure and the framework are briefly described. 
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Table 1: Investigated test scenarios. 

Scenario 𝜃𝜃 ≠ 0 𝜕𝜕. .
𝜕𝜕𝜕𝜕

 𝑣𝑣 BCs Gap Geometry 

Sealing 
Movement ✘ 

𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

= 0 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= −0.1 
0.1 

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 0.3 

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 0.2 

𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 0 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 0 
 

Stationary 
Cavitation ✔ 

𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕

= 0 

𝜕𝜕ℎ
𝜕𝜕𝜕𝜕

= 0 
1 

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 0.7 

𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 0.2 

𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 = 0 

𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 = 0 
 

 Sealing Movement 

For the first test case, a converging gap is analyzed. The housing, as the bottom 
part, moves horizontally in a shearing motion relative to the top part which represents 
the seal. In addition, the seal is moved vertically towards the housing with the idea 
in mind to model a simple way of deformation without any interaction with the actual 
pressure distribution. In this converging setup, no cavitation is modeled. 
The Reynolds equation for this specific case is shown in Equation (4). For both sce-
narios, smooth surfaces and incompressible fluids are assumed, which leads to the 
neglection of the roughness 𝑅𝑅𝑞𝑞, the flow factors 𝛷𝛷𝜏𝜏 and 𝛷𝛷𝜏𝜏 and the density 𝜌𝜌. 
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To solve the Reynolds equation for this specific case, pressure boundary condi-
tions are required. Since the lubricant is incompressible and the seal is moved with 
a constant velocity, no transient effects are present. Hence the PINN’s losses con-
sist of the residual and boundary condition loss being implemented as Mean 
Squared Error (MSE) terms, which is a common choice for PINNs. Simulation pa-
rameters are shown in and the PINN with an exemplary network structure is de-
picted in Figure 2. 
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Table 2: Simulation parameters for the sealing movement scenario. 

Variable Value Variable Value 
𝑛𝑛𝑥𝑥 100 𝑣𝑣𝑟𝑟𝑙𝑙𝑙𝑙 0.1 
𝑛𝑛𝑡𝑡 10 𝑣𝑣ℎ -0.1 

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , 𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 0.3, 0.2 ℎ [1, 0.5, 0, 0] 

 
Figure 2: PINN for the sealing movement scenario. 

 Stationary Cavitation 

In the second test case, cavitation is modelled and therefore a diverging gap is cho-
sen. Similar to the first case, the housing is moved horizontally but the seal is fixed. 
Since cavitation is modelled, the losses consist of the already introduced residual 
loss and boundary conditions loss but need further extension by the Fischer-Bur-
meister loss. Rom demonstrated that the Fischer-Burmeister loss itself is insufficient 
to model transitions between cavitated and non-cavitated areas adequately and 
therefore introduced soft constraints [33]. These are implemented as a fourth condi-
tion to train the PINN. The set simulation parameters and the PINN are shown in 
Table 3 and Figure 3, respectively. 

Table 3: Simulation parameters for the stationary cavitation scenario 

Variable Value Variable  
𝑛𝑛𝑥𝑥 400 ℎ [0.5, 1, 0, 0] 
𝑛𝑛𝑡𝑡 1 𝜕𝜕𝑡𝑡ℎ𝑟𝑟𝑙𝑙𝑟𝑟ℎ 0.005 

𝜕𝜕𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 , 𝜕𝜕𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 0.7, 0.2 𝜃𝜃𝑡𝑡ℎ𝑟𝑟𝑙𝑙𝑟𝑟ℎ 0.1 

𝜃𝜃𝑙𝑙𝑙𝑙𝑙𝑙𝑡𝑡 ,𝜃𝜃𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑡𝑡 0, 0 �
𝜕𝜕𝜃𝜃
𝜕𝜕𝜕𝜕
�
𝑡𝑡ℎ𝑟𝑟𝑙𝑙𝑟𝑟ℎ

 15 

𝑣𝑣𝑟𝑟𝑙𝑙𝑙𝑙 1 𝑛𝑛𝐶𝐶𝐶𝐶_𝑎𝑎𝑎𝑎𝑎𝑎𝑙𝑙𝑎𝑎  15 
𝑣𝑣ℎ 0   

Optimise

𝜕𝜕𝑟

𝜕𝜕
𝜎

𝜎

𝜎

Input

𝜎

𝜎

𝜎 𝜕𝜕
𝜇

Hidden Layers Output AD Losses

𝜕𝜕

𝜂𝜂
…
ℎ3
ℎ4

𝜕𝜕𝑙

𝜎

𝜎

𝜎

𝜎

𝜎

𝜎

𝜕𝜕2𝑝𝑝
𝜕𝜕𝑥𝑥2

𝜕𝜕𝑝𝑝
𝜕𝜕𝑥𝑥

𝐼



586     22nd ISC 
______________________________________________________________________________________________________________ 

 
Figure 3: PINN Architecture in case of Cavitation. 

Since a stationary model is built, transient effects are neglected. Therefore, the 
Reynolds equation is as follows: 
𝜕𝜕
𝜕𝜕𝜕𝜕

�(1 − 𝜃𝜃)ℎ� −
1

12𝜂𝜂
𝜕𝜕
𝜕𝜕𝜕𝜕

�ℎ3
𝜕𝜕𝜕𝜕
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To enforce the Fischer-Burmeister equation being fulfilled in transition areas espe-
cially, the soft constraints loss is implemented in the following two equations: 
 
𝜃𝜃 = 0, 𝑖𝑖𝑖𝑖 𝜕𝜕 >  𝜕𝜕𝑡𝑡ℎ𝑟𝑟𝑙𝑙𝑟𝑟ℎ   (6) 

 
𝜕𝜕 = 0, 𝑖𝑖𝑖𝑖 𝜃𝜃 >  𝜃𝜃𝑡𝑡ℎ𝑙𝑙𝑟𝑟𝑟𝑟ℎ (7) 

 
Pressure and cavitation should never be non-zero at the same position. Therefore, 
thresholds are introduced: Whenever one threshold is exceeded, values of the cor-
responding pressure or cavitation are returned as a loss. Since these transition areas 
usually make up for a small portion of the whole domain, these areas are considered 
when normalizing the loss. 

4.2 Training Procedure 

The framework consists of three main parts, shown in Figure 4: The PINN itself and 
two optimizers. While the Bayesian optimizer improves the fundamental hyperpa-
rameters, initializing a new network each iteration of an outer loop, the Adam opti-
mizer updates the weights and biases of all neurons and therefore improves losses 
in an inner training loop. In each training iteration, the PINN is evaluated for returning 
pressure (and cavitation) predictions, and the corresponding losses are calculated. 
When the final epoch is finished, the Bayesian optimization computes new hyperpa-
rameters for the next trial. 
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Once promising hyperparameters are found, training without Bayesian optimization 
and a higher number of epochs is started. The final model is saved for evaluation. 

 

Figure 4: HD-PINN framework for the training procedure. Adapted from [36]. 

4.3 Adaptive Collocation Points 

Areas with high 𝜃𝜃-gradients have shown to be hard to predict and therefore need 
special refinement [33]: After training the neural network for 50000 epochs, new col-
location points 𝑛𝑛𝑥𝑥 are added in desired areas. Gradients are checked whether they 
exceed a certain threshold, and if so a predefined number of 15 collocation points is 
added to their left. This process is repeated every 5000 epochs until a total of four 
updates is reached. This ensures that a region with high gradients is sufficiently 
sampled to obtain an adequate resolution of these areas. 

5 Results 

5.1 Sealing Movement 

The pressure distribution of PINN and DDS for three different time steps,  
𝜕𝜕 = (0, 0.5, 1) of the first scenario and the initial seal geometry are shown in Figure 
5. The PINN shows good agreement with the DDS for the pressure trajectory for 
each time step. The pressure increase over time is accurately captured by the PINN. 
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Figure 5: Pressure distribution for the sealing movement scenario for a) 𝜕𝜕 = 0, b) 𝜕𝜕 = 0.5, 
c) 𝜕𝜕 = 1 and d) the sealing geometry at 𝜕𝜕 = 0. 

5.2 Stationary Cavitation 

The results of the second scenario, the stationary cavitation, are depicted in Figure 
6. The results show the pressure distribution and the cavitation fraction in one plot 
and the lubrication film height in another plot.  

  

Figure 6: Pressure distribution and cavitation for the stationary cavitation scenario and the 
lubrication height. 
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In the second scenario, the PINN also performs well for the pressure distribution and 
the cavitation area. The right transition regime shows some deviation between PINN 
and DDS. The soft constraints enhance the location of the switch between pressure 
and cavitation area. Further tuning of the constraints in combination with new hy-
perparameters could increase the accuracy even more. 

6 Summary and Conclusion 

This contribution demonstrates the capability of PINNs to solve dynamic height 
changes and cavitation modeling tasks, governed by the Reynolds equation. They 
do so, by computing the pressure distribution and cavitation fraction within sealing 
contacts in a housing. In the beginning, an introduction to hydrodynamic lubrication 
was given, followed by a description of PINNs and their application-solving variants 
of the Reynolds equation. After that, the investigated scenarios of sealing movement 
and stationary cavitation as well as the applied training procedure for the PINNs were 
presented in detail.  
Regarding the pressure, the PINN can accurately compute the distribution and the 
boundaries, validated with the DDS. The cavitation determination in the second sce-
nario demonstrates good agreement inside the cavitation region. For the regime 
where pressure and cavitation area switch, the PINN can locate them and sufficiently 
compute the desired values. The PINN showed the possibility of computing high 
gradients, and the introduced soft constraints represent a further possibility for in-
creasing accuracy in these areas. The results of this work represent an advancement 
in the domain of lubricated contact simulations, depicting a PIML approach to accel-
erate hydrodynamic lubrication computation with no to less accuracy loss.  
Further work will be done by integrating transient behavior for the cavitation fraction 
of the Reynolds equation and solving this scenario with the framework. Additionally, 
the soft constraints will be investigated to obtain more accuracy for high-gradient 
regions. 
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8 Nomenclature 

Variable Description Unit 
ℎ  Gap height [-] 
ℎ𝑙𝑙𝑙𝑙𝑙𝑙  Lubrication height [-] 
ℎ1  Height at left end [-] 
ℎ2  Height at right end [-] 
ℎ3  Curvature of sealing [-] 
ℎ4  Position for sealing bend [-] 
𝑛𝑛𝑡𝑡  Time collocation points [-] 
𝑛𝑛𝑥𝑥  Position collocation points [-] 
𝜕𝜕  Hydrodynamic pressure [-] 
𝜕𝜕𝑙𝑙,𝑙𝑙,𝑟𝑟  Pressure boundary condition for left and right boundary [-] 
𝜕𝜕𝑙𝑙,𝑟𝑟   Pressure at the left and right boundary [-] 
𝜕𝜕𝑡𝑡ℎ𝑙𝑙𝑟𝑟𝑟𝑟ℎ Pressure threshold for soft constraints [-] 
𝑅𝑅𝑞𝑞  Root mean squared contact surface roughness [-] 
𝜕𝜕  Time [-] 
𝑣𝑣  Velocity of counter surface [-] 
𝑣𝑣ℎ  Velocity of sealing [-] 
𝜕𝜕  Axial coordinate [-] 
𝜕𝜕𝑙𝑙  Position of sealing bend [-] 
𝜕𝜕𝑙𝑙  Left end of the geometry [-] 
𝜕𝜕𝑟𝑟  Right end of the geometry [-] 
𝜂𝜂  Fluid viscosity [-] 
𝜃𝜃  Cavity friction [-] 
𝜃𝜃𝑡𝑡ℎ𝑙𝑙𝑟𝑟𝑟𝑟ℎ Cavitation threshold for soft constraints [-] 
𝜌𝜌  Fluid density [-] 
𝛷𝛷𝑝𝑝  Pressure flow factors [-] 
𝛷𝛷𝜏𝜏  Shear flow factors [-] 
𝜕𝜕..
𝜕𝜕𝑥𝑥,𝑡𝑡

  Partial differentiation regarding time and position [-] 
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